http://www.csdn.net/article/2014-07-22/2820774-stackoverflow-update-560m-pageviews-a-month-25-servers

摘要:同时使用Linux和Windows平台产品,大量使用静态的方法和类,Stack Overflow是个重度性能控。同时,取代横向扩展,他们坚持着纵向扩展思路,因为“硬件永远比程序员便宜”。

【编者按】StackOverflow是一个IT技术问答网站,用户可以在网站上提交和回答问题。当下的StackOverflow已拥有400万个用户,4000万个回答,月PV5.6亿,世界排行第54。然而值得关注的是,支撑他们网站的全部服务器只有25台,并且都保持着非常低的资源使用率,这是一场高有效性、负载均衡、缓存、数据库、搜索及高效代码上的较量。近日,High Scalability创始人Todd Hoff根据Marco Cecconi的演讲视频“ The architecture of StackOverflow”以及Nick Craver的博文“ What it takes to run Stack Overflow”总结了StackOverflow的成功原因。


免费订阅“CSDN大数据”微信公众号,实时了解最新的大数据进展!

CSDN大数据,专注大数据资讯、技术和经验的分享和讨论,提供Hadoop、Spark、Imapala、Storm、HBase、MongoDB、Solr、机器学习、智能算法等相关大数据观点,大数据技术,大数据平台,大数据实践,大数据产业资讯等服务。


以下为译文

意料之中,也是意料之外,Stack Overflow仍然重度使用着微软的产品。他们认为既然微软的基础设施可以满足需求,又足够便宜,那么没有什么理由去做根本上的改变。而在需要的地方,他们同样使用了Linux。究其根本,一切都是为了性能。

另一个值得关注的地方是,Stack Overflow仍然使用着纵向扩展策略,没有使用云。他们使用了384GB的内存和2TB的SSD来支撑SQL Servers,如果使用AWS的话,花费可想而知。没有使用云的另一个原因是Stack Overflow认为云会一定程度上的降低性能,同时也会给优化和排查系统问题增加难度。此外,他们的架构也并不需要横向扩展。峰值期间是横向扩展的杀手级应用场景,然而他们有着丰富的系统调整经验去应对。该公司仍然坚持着Jeff Atwood的名言——硬件永远比程序员便宜。

Marco Ceccon曾提到,在谈及系统时,有一件事情必须首先弄明白——需要解决问题的类型。首先,从简单方面着手,StackExchange究竟是用来做什么的——首先是一些主题,然后围绕这些主题建立社区,最后就形成了这个令人敬佩的问答网站。

其次则是规模相关。StackExchange在飞速增长,需要处理大量的数据传输,那么这些都是如何完成的,特别是只使用了25台服务器,下面一起追根揭底:

状态

 

  • StackExchange拥有110个站点,以每个月3到4个的速度增长。
  • 400万用户
  • 800万问题
  • 4000万答案
  • 世界排名54位
  • 每年增长100%
  • 月PV 5.6亿万
  • 大多数工作日期间峰值为2600到3000请求每秒,作为一个编程相关网站,一般情况下工作日的请求都会高于周末
  • 25台服务器
  • SSD中储存了2TB的SQL数据
  • 每个web server都配置了2个320G的SSD,使用RAID 1
  • 每个ElasticSearch主机都配备了300GB的机械硬盘,同时也使用了SSD
  • Stack Overflow的读写比是40:60
  • DB Server的平均CPU利用率是10%
  • 11个web server,使用IIS
  • 2个负载均衡器,1个活跃,使用HAProxy
  • 4个活跃的数据库节点,使用MS SQL
  • 3台实现了tag engine的应用程序服务器,所有搜索都通过tag
  • 3台服务器通过ElasticSearch做搜索
  • 2台使用了Redis的服务器支撑分布式缓存和消息
  • 2台Networks(Nexus 5596 + Fabric Extenders)
  • 2 Cisco 5525-X ASAs
  • 2 Cisco 3945 Routers
  • 主要服务Stack Exchange API的2个只读SQL Servers
  • VM用于部署、域控制器、监控、运维数据库等场合

 

平台

 

  • ElasticSearch
  • Redis
  • HAProxy
  • MS SQL
  • Opserver
  • TeamCity
  • Jil——Fast .NET JSON Serializer,建立在Sigil之上
  • Dapper——微型的ORM

 

UI

 

  • UI拥有一个信息收件箱,用于新徽章获得、用户发送信息、重大事件发生时的信息收取,使用WebSockets实现,并通过Redis支撑。
  • 搜索箱通过 ElasticSearch 实现,使用了一个REST接口。
  • 因为用户提出问题的频率很高,因此很难显示最新问题,每秒都会有新的问题产生,从而这里需要开发一个关注用户行为模式的算法,只给用户显示感兴趣的问题。它使用了基于Tag的复杂查询,这也是开发独立Tag Engine的原因。
  • 服务器端模板用于生成页面。

 

服务器

 

  • 25台服务器并没有满载,CPU使用率并不高,单计算SO(Stack Overflow)只需要5台服务器。
  • 数据库服务器资源利用率在10%左右,除下执行备份时。
  • 为什么会这么低?因为数据库服务器足足拥有384GB内存,同时web server的CPU利用率也只有10%-15%。
  • 纵向扩展还没有遇到瓶颈。通常情况下,如此流量使用横向扩展大约需要100到300台服务器。
  • 简单的系统。基于.Net,只用了9个项目,其他系统可能需要100个。之所以使用这么少系统是为了追求极限的编译速度,这点需要从系统开始时就进行规划,每台服务器的编译时间大约是10秒。
  • 11万行代码,对比流量来说非常少。
  • 使用这种极简的方式主要基于几个原因。首先,不需要太多测试,因为Meta.stackoverflow本来就是一个问题和bug讨论社区。其次,Meta.stackoverflow还是一个软件的测试网站,如果用户发现问题的话,往往会提出并给予解决方案。
  • 纽约数据中心使用的是Windows 2012,已经向2012 R2升级(Oregon已经完成了升级),Linux系统使用的是Centos 6.4。

 

SSD

 

  • 默认使用的是Intel 330(Web层等)
  • Intel 520用于中间层写入,比如Elastic Search
  • 数据层使用Intel 710和S3700
  • 系统同时使用了RAID 1和RAID 10(任何4+以上的磁盘都使用RAID 10)。不畏惧故障发生,即使生产环境中使用了上千块2.5英寸SSD,还没碰到过一块失败的情景。每个模型都使用了1个以上的备件,多个磁盘发生故障的情景不在考虑之中。
  • ElasticSearch在SSD上表现的异常出色,因为SO writes/re-indexes的操作非常频繁。
  • SSD改变了搜索的使用方式。因为锁的问题,Luncene.net并不能支撑SO的并发负载,因此他们转向了ElasticSearch。在全SSD环境下,并不需要围绕Binary Reader建立锁。

 

高可用性

 

  • 异地备份——主数据中心位于纽约,备份数据中心在Oregon。
  • Redis有两个从节点,SQL有2个备份,Tag Engine有3个节点,elastic有3个节点,冗余一切,并在两个数据中心同时存在。
  • Nginx是用于SSL,终止SSL时转换使用HAProxy。
  • 并不是主从所有,一些临时的数据只会放到缓存中
  • 所有HTTP流量发送只占总流量的77%,还存在Oregon数据中心的备份及一些其他的VPN流量。这些流量主要由SQL和Redis备份产生。

 

数据库

 

  • MS SQL Server
  • Stack Exchange为每个网站都设置了数据库,因此Stack Overflow有一个、Server Fault有一个,以此类推。
  • 在纽约的主数据中心,每个集群通常都使用1主和1只读备份的配置,同时还会在Oregon数据中心也设置一个备份。如果是运行的是Oregon集群,那么两个在纽约数据中心的备份都会是只读和同步的。
  • 为其他内容准备的数据库。这里还存在一个“网络范围”的数据库,用于储存登陆凭证和聚合数据(大部分是stackexchange.com用户文件或者API)。
  • Careers Stack Overflow、stackexchange.com和Area 51等都拥有自己独立的数据库模式。
  • 模式的变化需要同时提供给所有站点的数据库,它们需要向下兼容,举个例子,如果需要重命名一个列,那么将非常麻烦,这里需要进行多个操作:增加一个新列,添加作用在两个列上的代码,给新列写数据,改变代码让新列有效,移除旧列。
  • 并不需要分片,所有事情通过索引来解决,而且数据体积也没那么大。如果有filtered indexes需求,那么为什么不更高效的进行?常见模式只在DeletionDate = Null上做索引,其他则通过为枚举指定类型。每项votes都设置了1个表,比如一张表给post votes,1张表给comment votes。大部分的页面都可以实时渲染,只为匿名用户缓存,因此,不存在缓存更新,只有重查询。
  • Scores是非规范化的,因此需要经常查询。它只包含IDs和dates,post votes表格当下大约有56454478行,使用索引,大部分的查询都可以在数毫秒内完成。
  • Tag Engine是完全独立的,这就意味着核心功能并不依赖任何外部应用程序。它是一个巨大的内存结构数组结构,专为SO用例优化,并为重负载组合进行预计算。Tag Engine是个简单的windows服务,冗余的运行在多个主机上。CPU使用率基本上保持在2-5%,3个主机专门用于冗余,不负责任何负载。如果所有主机同时发生故障,网络服务器将把Tag Engine加载到内存中持续运行。
  • 关于Dapper无编译器校验查询与传统ORM的对比。使用编译器有很多好处,但在运行时仍然会存在fundamental disconnect问题。同时更重要的是,由于生成nasty SQL,通常情况还需要去寻找原始代码,而Query Hint和parameterization控制等能力的缺乏更让查询优化变得复杂。

 

编码

 

  • 流程

 

 

  • 大部分程序员都是远程工作,自己选择编码地点
  • 编译非常快
  • 然后运行少量的测试
  • 一旦编译成功,代码即转移至开发交付准备服务器
  • 通过功能开关隐藏新功能
  • 在相同硬件上作为其他站点测试运行
  • 然后转移至Meta.stackoverflow测试,每天有上千个程序员在使用,一个很好的测试环境
  • 如果通过则上线,在更广大的社区进行测试

 

 

  • 大量使用静态类和方法,为了更简单及更好的性能
  • 编码过程非常简单,因为复杂的部分被打包到库里,这些库被开源和维护。.Net 项目数量很低,因为使用了社区共享的部分代码。
  • 开发者同时使用2到3个显示器,多个屏幕可以显著提高生产效率。

 

缓存

 

  • 缓存一切
  • 5个等级的缓存
  • 1级是网络级缓存,缓存在浏览器、CDN以及代理服务器中。
  • 2级由.Net框架 HttpRuntime.Cache完成,在每台服务器的内存中。
  • 3级Redis,分布式内存键值存储,在多个支撑同一个站点的服务器上共享缓存项。
  • 4级SQL Server Cache,整个数据库,所有数据都被放到内存中。
  • 5级SSD。通常只在SQL Server预热后才生效。
  • 举个例子,每个帮助页面都进行了缓存,访问一个页面的代码非常简单:

 

 

  • 使用了静态的方法和类。从OOP角度来看确实很糟,但是非常快并有利于简洁编码。
  • 缓存由Redis和Dapper支撑,一个微型ORM

 

 

  • 为了解决垃圾收集问题,模板中1个类只使用1个副本,被建立和保存在缓存中。监测一切,包括GC操。据统计显示,间接层增加GC压力达到了某个程度时会显著的降低性能。
  • CDN Hit 。鉴于查询字符串基于文件内容进行哈希,只在有新建立时才会被再次取出。每天3000万到5000万Hit,带宽大约为300GB到600GB。
  • CDN不是用来应对CPU或I/O负载,而是帮助用户更快的获得答案

 

部署

 

  • 每天5次部署,不去建立过大的应用。主要因为

 

 

  • 可以直接的监视性能
  • 尽可能最小化建立,可以工作才是重点

 

 

  • 产品建立后再通过强大的脚本拷贝到各个网页层,每个服务器的步骤是:

 

 

  • 通过POST通知HAProxy下架某台服务器
  • 延迟IIS结束现有请求(大约5秒)
  • 停止网站(通过同一个PSSession结束所有下游)
  • Robocopy文件
  • 开启网站
  • 通过另一个POST做HAProxy Re-enable

 

 

  • 几乎所有部署都是通过puppet或DSC,升级通常只是大幅度调整RAID阵列并通过PXE boot安装,这样做非常快速。

 

协作

 

  • 团队

 

 

  • SRE (System Reliability Engineering):5人
  • Core Dev(Q&A site)6-7人
  • Core Dev Mobile:6人
  • Careers团队专门负责SO Careers产品开发:7人

 

 

  • Devops和开发者结合的非常紧密
  • 团队间变化很大
  • 大部分员工远程工作
  • 办公室主要用于销售,Denver和London除外
  • 一切平等,些许偏向纽约工作者,因为面对面有助于工作交流,但是在线工作影响也并不大
  • 对比可以在同一个办公室办公,他们更偏向热爱产品及有才华的工程师,他们可以很好的衡量利弊
  • 许多人因为家庭而选择远程工作,纽约是不错,但是生活并不宽松
  • 办公室设立在曼哈顿,那是个人才的诞生地。数据中心不能太偏,因为经常会涉及升级
  • 打造一个强大团队,偏爱极客。早期的微软就聚集了大量极客,因此他们征服了整个世界
  • Stack Overflow社区也是个招聘的地点,他们在那寻找热爱编码、乐于助人及热爱交流的人才。

 

编制预算

 

  • 预算是项目的基础。钱只花在为新项目建立基础设施上,如此低利用率的 web server还是3年前数据中心建立时购入。

 

测试

 

  • 快速迭代和遗弃
  • 许多测试都是发布队伍完成的。开发拥有一个同样的SQL服务器,并且运行在相同的Web层,因此性能测试并不会糟糕。
  • 非常少的测试。Stack Overflow并没有进行太多的单元测试,因为他们使用了大量的静态代码,还有一个非常活跃的社区。
  • 基础设施改变。鉴于所有东西都有双份,所以每个旧配置都有备份,并使用了一个快速故障恢复机制。比如,keepalived可以在负载均衡器中快速回退。
  • 对比定期维护,他们更愿意依赖冗余系统。SQL备份用一个专门的服务器进行测试,只为了可以重存储。计划做每两个月一次的全数据中心故障恢复,或者使用完全只读的第二数据中心。
  • 每次新功能发布都做单元测试、集成测试盒UI测试,这就意味着可以预知输入的产品功能测试后就会推送到孵化网站,即meta.stackexchange(原meta.stackoverflow)。

 

监视/日志

 

  • 当下正在考虑使用http://logstash.net/做日志管理,目前使用了一个专门的服务将syslog UDP传输到SQL数据库中。网页中为计时添加header,这样就可以通过HAProxy来捕获并且融合到syslog传输中。
  • Opserver和Realog用于显示测量结果。Realog是一个日志展示系统,由Kyle Brandt和Matt Jibson使用Go建立。
  • 日志通过HAProxy负载均衡器借助syslog完成,而不是IIS,因为其功能比IIS更丰富。

 

关于云

 

  • 还是老生常谈,硬件永远比开发者和有效率的代码便宜。基于木桶效应,速度肯定受限于某个短板,现有的云服务基本上都存在容量和性能限制。
  • 如果从开始就使用云来建设SO说不定也会达到现在的水准。但毫无疑问的是,如果达到同样的性能,使用云的成本将远远高于自建数据中心。

 

性能至上

 

  • StackOverflow是个重度的性能控,主页加载的时间永远控制在50毫秒内,当下的响应时间是28毫秒。
  • 程序员热衷于降低页面加载时间以及提高用户体验。
  • 每个独立的网络提交都予以计时和记录,这种计量可以弄清楚提升性能需要修改的地方。
  • 如此低资源利用率的主要原因就是高效的代码。web server的CPU平均利用率在5%到15%之间,内存使用为15.5 GB,网络传输在20 Mb/s到40 Mb/s。SQL服务器的CPU使用率在5%到10%之间,内存使用是365GB,网络传输为100 Mb/s到200 Mb/s。这可以带来3个好处:给升级留下很大的空间;在严重错误发生时可以保持服务可用;在需要时可以快速回档。

 

学到的知识

1. 为什么使用MS产品的同时还使用Redis?什么好用用什么,不要做无必要的系统之争,比如C#在Windows机器上运行最好,我们使用IIS;Redis在*nix机器上可以得到充分发挥,我们使用*nix。

2. Overkill即策略。平常的利用率并不能代表什么,当某些特定的事情发生时,比如备份、重建等完全可以将资源使用拉满。

3. 坚固的SSD。所有数据库都建立在SSD之上,这样可以获得0延时。

4. 了解你的读写负载。

5. 高效的代码意味着更少的主机。只有新项目上线时才会因为特殊需求增加硬件,通常情况下是添加内存,但在此之外,高效的代码就意味着0硬件添加。所以经常只讨论两个问题:为存储增加新的SSD;为新项目增加硬件。

6. 不要害怕定制化。SO在Tag上使用复杂查询,因此专门开发了所需的Tag Engine。

7. 只做必须做的事情。之所以不需要测试是因为有一个活跃的社区支撑,比如,开发者不用担心出现“Square Wheel”效应,如果开发者可以制作一个更更轻量级的组件,那就替代吧。

8. 注重硬件知识,比如IL。一些代码使用IL而不是C#。聚焦SQL查询计划。使用web server的内存转储究竟做了些什么。探索,比如为什么一个split会产生2GB的垃圾。

9. 切勿官僚作风。总有一些新的工具是你需要的,比如,一个编辑器,新版本的Visual Studio,降低提升过程中的一切阻力。

10. 垃圾回收驱动编程。SO在减少垃圾回收成本上做了很多努力,跳过类似TDD的实践,避免抽象层,使用静态方法。虽然极端,但是确实打造出非常高效的代码。

11. 高效代码的价值远远超出你想象,它可以让硬件跑的更快,降低资源使用,切记让代码更容易被程序员理解。

原文链接: StackOverflow Update: 560M Pageviews A Month, 25 Servers, And It’s All About Performance(编译/仲浩 审校/魏伟)